By Anthony Woollacott at November 02 2018 00:36:39

Many scientists remain doubtful that true AI can ever be developed. The operation of the human mind is still little understood, and computer design may remain essentially incapable of analogously duplicating those unknown, complex processes. Various routes are being used in the effort to reach the goal of true AI. One approach is to apply the concept of parallel processing-interlinked and concurrent computer operations. Another is to create networks of experimental computer chips, called silicon neurons, that mimic data-processing functions of brain cells. Using analog technology, the transistors in these chips emulate nerve-cell membranes in order to operate at the speed of neurons.

In all cases, however, the task that the algorithm is to accomplish must be definable. That is, the definition may involve mathematical or logic terms or a compilation of data or written instructions, but the task itself must be one that can be stated in some way. In terms of ordinary computer usage, this means that algorithms must be programmable, even if the tasks themselves turn out to have no solution. In computational devices with a built-in microcomputer logic, this logic is a form of algorithm. As computers increase in complexity, more and more software-program algorithms are taking the form of what is called hard software.

Knowledge workers carry out these processes by taking into account multiple inputs (generally a wide set of unstructured data and information) to perform difficult tasks and make complex decisions among multiple possible ways of doing the work, each one implying different levels of risk and possible benefits. They are dependent on individuals and it is not possible to automate them. One example of a knowledge process is "Marketing a new product". The same steps are followed each time a new product is launched (benchmarking competitors, deciding pricing strategy, planning promotion, etc...), but it is the experience, knowledge and intuition of the people that drive the process to success.

Linear Programming, mathematical and operations-research technique, used in administrative and economic planning to maximize the linear functions of a large number of variables, subject to certain constraints. The development of high-speed electronic computers and data-processing techniques has brought about many recent advances in linear programming, and the technique is now widely used in industrial and military operations. Linear programming is basically used to find a set of values, chosen from a prescribed set of numbers, that will maximize or minimize a given polynomial form and this is illustrated by the finished; the manufacturer knows that as many articles as are produced can be sold.