By Kate Le Grand at October 30 2018 07:48:04
All process instances are executed in a very similar way and it is easy to draw a flowchart detailing the sequence in which tasks are executed. It is also possible to formalize the business rules that guide decisions, normally based on the evaluation of some process variables. But recently other kinds of processes have caught the attention of process management specialists. They are known as knowledge processes, or knowledge-based processes. Knowledge processes can be defined as "high added value processes in which the achievement of goals is highly dependent on the skills, knowledge and experience of the people carrying them out". Some examples could be management, R&D, or new product development processes.
In all cases, however, the task that the algorithm is to accomplish must be definable. That is, the definition may involve mathematical or logic terms or a compilation of data or written instructions, but the task itself must be one that can be stated in some way. In terms of ordinary computer usage, this means that algorithms must be programmable, even if the tasks themselves turn out to have no solution. In computational devices with a built-in microcomputer logic, this logic is a form of algorithm. As computers increase in complexity, more and more software-program algorithms are taking the form of what is called hard software.
Knowledge workers carry out these processes by taking into account multiple inputs (generally a wide set of unstructured data and information) to perform difficult tasks and make complex decisions among multiple possible ways of doing the work, each one implying different levels of risk and possible benefits. They are dependent on individuals and it is not possible to automate them. One example of a knowledge process is "Marketing a new product". The same steps are followed each time a new product is launched (benchmarking competitors, deciding pricing strategy, planning promotion, etc...), but it is the experience, knowledge and intuition of the people that drive the process to success.
The possibility of developing some such artifact has intrigued human beings since ancient times. With the growth of modern science, the search for AI has taken two major directions: psychological and physiological research into the nature of human thought, and the technological development of increasingly sophisticated computing systems. In the latter sense, the term AI has been applied to computer systems and programs capable of performing tasks more complex than straightforward programming, although still far from the realm of actual thought. The most important fields of research in this area are information processing, pattern recognition, game-playing computers, and applied fields such as medical diagnosis.